
谷歌新架构一战成名,打破Transformer记忆瓶颈,姚班校友钟沛林新作
谷歌新架构一战成名,打破Transformer记忆瓶颈,姚班校友钟沛林新作想挑战 Transformer 的新架构有很多,来自谷歌的“正统”继承者 Titan 架构更受关注。
想挑战 Transformer 的新架构有很多,来自谷歌的“正统”继承者 Titan 架构更受关注。
Mamba 这种状态空间模型(SSM)被认为是 Transformer 架构的有力挑战者。近段时间,相关研究成果接连不断。而就在不久前,Mamba 作者 Albert Gu 与 Karan Goel、Chris Ré、Arjun Desai、Brandon Yang 一起共同创立的 Cartesia 获得 2700 万美元种子轮融资。
在机器学习领域,开发一个在未见过领域表现出色的通用智能体一直是长期目标之一。一种观点认为,在大量离线文本和视频数据上训练的大型 transformer 最终可以实现这一目标。
Sora 的发布让广大研究者及开发者深刻认识到基于 Transformer 架构扩散模型的巨大潜力。作为这一类的代表性工作,DiT 模型抛弃了传统的 U-Net 扩散架构,转而使用直筒型去噪模型。鉴于直筒型 DiT 在隐空间生成任务上效果出众,后续的一些工作如 PixArt、SD3 等等也都不约而同地使用了直筒型架构。
新一代通用灵活的网络结构 TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters 来啦!
Transformer自问世后就大放异彩,但有个小毛病一直没解决: 总爱把注意力放在不相关的内容上,也就是信噪比低。 现在微软亚研院、清华团队出手,提出全新改进版Differential Transformer,专治这个老毛病,引起热议。
牛顿没解决的问题,AI给你解决了? AI的推理能力一直是研究的焦点。作为最纯粹、要求最高的推理形式之一,能否解决高级的数学问题,无疑是衡量语言模型推理水平的一把尺。
7 年前,谷歌在论文《Attention is All You Need》中提出了 Transformer。就在 Transformer 提出的第二年,谷歌又发布了 Universal Transformer(UT)。它的核心特征是通过跨层共享参数来实现深度循环,从而重新引入了 RNN 具有的循环表达能力。
OpenAI ο1 模型的发布掀起了人们对 AI 推理过程的关注,甚至让现在的 AI 行业开始放弃卷越来越大的模型,而是开始针对推理过程进行优化了。今天我们介绍的这项来自 Meta FAIR 田渊栋团队的研究也是如此,其从人类认知理论中获得了灵感,提出了一种新型 Transformer 架构:Dualformer。
自从 Transformer 模型问世以来,试图挑战其在自然语言处理地位的挑战者层出不穷。 这次登场的选手,不仅要挑战 Transformer 的地位,还致敬了经典论文的名字。 再看这篇论文的作者列表,图灵奖得主、深度学习三巨头之一的 Yoshua Bengio 赫然在列。